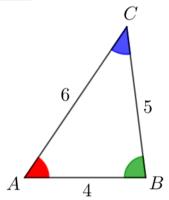
Défis Première Spé maths : produit scalaire Thiaude P.

Défi PRODSCAL 01 Déterminer la mesure de l'angle \widehat{BAC} arrondie au degré :



Corrigé

D'après la formule du produit scalaire dans un triangle, on a :

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}[AB^2 + AC^2 - BC^2] = \frac{1}{2}[4^2 + 6^2 - 5^2] = \frac{27}{2}$$

En utilisant à présent la définition du produit scalaire, on obtient :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos \overrightarrow{BAC} = 4 \times 6 \times \cos \overrightarrow{BAC} = 24 \times \cos \overrightarrow{BAC}$$

Donc:

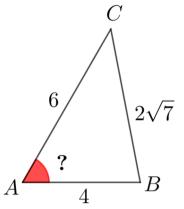
$$24 \times \cos \widehat{BAC} = \frac{27}{2}$$

$$\cos \widehat{BAC} = \frac{\frac{27}{2}}{24} = \frac{27}{2} \times \frac{1}{24} = \frac{9 \times 3}{2 \times 8 \times 3} = \frac{9}{16} = 0,5625$$

Avec la calculatrice, la mesure de l'angle \widehat{BAC} est environ 56° arrondi au degré.

NORMAL FLOTT AUTO RÉEL DEGRÉ MP	NORMAL FLOTT AUTO RÉEL DEGRÉ MP
MATHPRINI CLASSIQ NORMAL SCI ING FLOTTANT 0123456789 RADIAN DEGRA FONCTION PARAMÉTRIQ POLAIRE SUITE FPAIS POINT-ÉPAIS FIN POINT-FIN SÉQUENTIELLE SIMUL RÉEL 0.+bi re^(0i) PLEINIGE HORIZONTAL GRAPHE-TABLE TYPE FRACTION: N/J Un/d RÉSULTATS: AUTO DÉC DIAGNOTIQUES STATS: NAFF AFF ASSISTANT STATS: AFF AFF RÉGLER HORLOGE 01/01/1512:00 AM LANGUE: FRANÇAIS	cos ⁻¹ (0.5625) 55.77113367

Défi PRODSCAL 02 Déterminer la valeur exacte de la mesure de l'angle \widehat{BAC} :



Corrigé

D'après la formule du produit scalaire dans un triangle, on a :

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} [AB^2 + AC^2 - BC^2] = \frac{1}{2} [4^2 + 6^2 - (2\sqrt{7})^2]$$

= $\frac{1}{2} [16 + 36 - 28] = 12$

En utilisant à présent la définition du produit scalaire, on obtient :

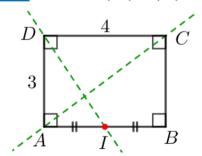
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos \widehat{BAC} = 4 \times 6 \times \cos \widehat{BAC} = 24 \times \cos \widehat{BAC}$$

Donc:

$$24 \times \cos \widehat{BAC} = 12 \Leftrightarrow \cos \widehat{BAC} = \frac{12}{24} = \frac{1}{2}$$

Or, l'unique réel x compris entre 0 et π tel que $\cos(x) = \frac{1}{2}$ est $\frac{\pi}{3}$ donc l'angle \widehat{BAC} mesure 60° . L'angle \widehat{BAC} mesure 60° .

Défi PRODSCAL 03 Les droites (AC) et (DI) sont-elles perpendiculaires ?



Corrigé

On pose $\vec{i} = \frac{1}{4} \overrightarrow{AB}$ et $\vec{j} = \frac{1}{3} \overrightarrow{AD}$ et on munit le plan du repère orthonormé $(A; \vec{i}, \vec{j})$. On a alors : A(0; 0), C(4; 3), D(0; 3), I(2; 0).

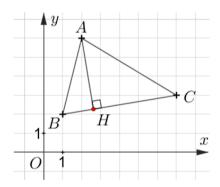
$$\overrightarrow{AC} \begin{pmatrix} x_C - x_A \\ y_C - y_A \end{pmatrix} \qquad \overrightarrow{DI} \begin{pmatrix} x_I - x_D \\ y_I - y_D \end{pmatrix} \\
\overrightarrow{AC} \begin{pmatrix} 4 - 0 \\ 3 - 0 \end{pmatrix} \qquad \overrightarrow{DI} \begin{pmatrix} 2 - 0 \\ 0 - 3 \end{pmatrix} \\
\overrightarrow{DI} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

En utilisant l'expression du produit scalaire dans un repère orthonormé :

$$\overrightarrow{AC} \cdot \overrightarrow{DI} = x_{\overrightarrow{AC}} \times x_{\overrightarrow{DI}} + y_{\overrightarrow{AC}} \times y_{\overrightarrow{DI}} = 4 \times 2 + 3 \times (-3) = 8 - 9 = -1$$

On constate que : $\overrightarrow{AC} \cdot \overrightarrow{DI} \neq 0$ donc \overrightarrow{AC} et \overrightarrow{DI} ne sont pas orthogonaux, par conséquent (AC) et (DI) ne sont pas perpendiculaires.

Défi PRODSCAL 04 Dans un repère orthonormé on donne : A(2; 6), B(1; 2) et C(7; 3), on note $H(x_H; y_H)$ le pied de la hauteur issue de A du triangle ABC :



- **1.** Déterminer les coordonnées de \overrightarrow{BC}
- **2.** Que dire de $\overrightarrow{AH} \cdot \overrightarrow{BC}$? En déduire que : $6x_H + y_H = 18$.
- **3.** Que dire de $\det(\overrightarrow{BH}, \overrightarrow{BC})$? En déduire que : $x_H 6y_H = -11$.
- **4.** Déterminer les coordonnées de *H*.

Corrigé

1. Déterminer les coordonnées de \overrightarrow{BC} .

On a:
$$\overrightarrow{BC} \begin{pmatrix} x_C - x_B \\ y_C - y_B \end{pmatrix}$$
, or $B(1; 2)$ et $C(7; 3)$, donc: $\overrightarrow{BC} \begin{pmatrix} 7 - 1 \\ 3 - 2 \end{pmatrix} \Leftrightarrow \overrightarrow{BC} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$

2. Que dire de $\overrightarrow{AH} \cdot \overrightarrow{BC}$? En déduire que : $6x_H + y_H = 18$.

On a : $\overrightarrow{AH} \perp \overrightarrow{BC}$, donc : $\overrightarrow{AH} \cdot \overrightarrow{BC} = \mathbf{0}$. En utilisant l'expression du produit scalaire dans un repère orthonormé, on obtient : $x_{\overrightarrow{AH}} \times x_{\overrightarrow{BC}} + y_{\overrightarrow{AH}} \times y_{\overrightarrow{BC}} = 0$ Or A(2;6) et $H(x_H;y_H)$ donc $\overrightarrow{AH} \begin{pmatrix} x_H - 2 \\ y_H - 6 \end{pmatrix}$ et $\overrightarrow{BC} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$ donc : $(x_H - 2)(6) + (y_H - 6)(1) = 0 \Leftrightarrow 6x_H - 12 + y_H - 6 = 0$ $\Leftrightarrow 6x_H + y_H - 18 = 0 \Leftrightarrow 6x_H + y_H = 18$

3. Que dire de $\det(\overrightarrow{BH}, \overrightarrow{BC})$? En déduire que : $x_H - 6y_H = -11$.

 $H \in (BC)$ donc \overrightarrow{BH} et \overrightarrow{BC} sont colinéaires, par conséquent $\det(\overrightarrow{BH}, \overrightarrow{BC}) = 0$. $\longrightarrow (x_H - 1) \longrightarrow (6)$

Or,
$$\overrightarrow{BH} \begin{pmatrix} x_H - 1 \\ y_H - 2 \end{pmatrix}$$
 et $\overrightarrow{BC} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$, donc:

$$\begin{vmatrix} x_H - 1 & 6 \\ y_H - 2 & 1 \end{vmatrix} = 0 \Leftrightarrow (x_H - 1)(1) - 6(y_H - 2) = 0$$

$$\Leftrightarrow x_H - 1 - 6y_H + 12 = 0 \Leftrightarrow x_H - 6y_H + 11 = 0 \Leftrightarrow x_H - 6y_H = -11$$

Déterminer les coordonnées de H.

D'après les deux questions précédentes, les coordonnées de H sont solutions du système : $\begin{cases} 6x+y=18 \\ x-6y=-11 \end{cases}$. On a les équivalences :

$$\begin{cases} 6x + y = 18 \\ x - 6y = -11 \end{cases} \Leftrightarrow \begin{cases} y = 18 - 6x \\ x - 6y = -11 \end{cases} \Leftrightarrow \begin{cases} y = 18 - 6x \\ x - 6(18 - 6x) = -11 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 18 - 6x \\ x - 108 + 36x = -11 \end{cases} \Leftrightarrow \begin{cases} y = 18 - 6x \\ 37x = 97 \end{cases}$$

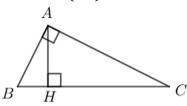
$$\Leftrightarrow \begin{cases} x = \frac{97}{37} \\ y = 16 - 6 \times \frac{97}{37} \end{cases} \Leftrightarrow \begin{cases} x = \frac{97}{37} \\ y = \frac{84}{37} \end{cases}$$

On a donc:

$$H\left(\frac{97}{37};\frac{84}{37}\right)$$

Défi PRODSCAL 05 Un grand classique

On se donne une unité de distance. Soit ABC un triangle rectangle en A, H le projeté orthogonal de A sur (BC):



Comparer AH^2 et $HB \times HC$.

Corrigé

$$\overrightarrow{AB} \perp \overrightarrow{AC}$$
 donc $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$, on a les équivalences :
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Leftrightarrow (\overrightarrow{AH} + \overrightarrow{HB}) \cdot (\overrightarrow{AH} + \overrightarrow{HC}) = 0$ (Chasles)
 $\Leftrightarrow \overrightarrow{AH}^2 + \overrightarrow{AH} \cdot \overrightarrow{HC} + \overrightarrow{HB} \cdot \overrightarrow{AH} + \overrightarrow{HB} \cdot \overrightarrow{HC} = 0$ (*) (bilinéarité)

Or,

 $\overrightarrow{AH}^2 = AH^2$, $\overrightarrow{AH} \perp \overrightarrow{HC}$ donc $\overrightarrow{AH} \cdot \overrightarrow{HC} = 0$, $\overrightarrow{HB} \perp \overrightarrow{AH}$ donc $\overrightarrow{HB} \cdot \overrightarrow{AH} = 0$, \overrightarrow{HB} et \overrightarrow{HC} sont colinéaires de sens contraires donc

$$\overrightarrow{HB} \cdot \overrightarrow{HC} = -\|\overrightarrow{HB}\| \times \|\overrightarrow{HC}\| = -HB \times HC$$

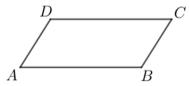
donc l'égalité (*) s'écrit :

$$AH^2 + 0 + 0 - HB \times HC = 0 \Leftrightarrow AH^2 = HB \times HC$$

Conclusion : $AH^2 = HB \times HC$.

Défi PRODSCAL 06 Un grand classique

On se donne une unité de distance. Soit *ABCD* un parallélogramme :



Comparer les deux nombres : $AB^2 + BC^2 + CD^2 + DA^2$ et $AC^2 + BD^2$.

Autrement dit comparer la somme des carrés des côtés du parallélogramme et la somme des carrés de ses diagonales.

Corrigé

$$AC^{2} + BD^{2}$$

$$= \overrightarrow{AC^{2}} + \overrightarrow{BD^{2}}$$

$$= (\overrightarrow{AB} + \overrightarrow{BC})^{2} + (\overrightarrow{BC} + \overrightarrow{CD})^{2} \text{ (Chasles)}$$

$$= AB^{2} + BC^{2} + 2\overrightarrow{AB} \cdot \overrightarrow{BC} + BC^{2} + CD^{2} + 2\overrightarrow{BC} \cdot \overrightarrow{CD} \text{ (bilinéarité)}$$

$$= AB^{2} + BC^{2} + CD^{2} + DA^{2} + 2(\overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BC} \cdot \overrightarrow{CD})$$

$$= AB^{2} + BC^{2} + CD^{2} + DA^{2} + 2(\overrightarrow{BC} \cdot \overrightarrow{AB} + \overrightarrow{BC} \cdot \overrightarrow{CD})$$

$$= AB^{2} + BC^{2} + CD^{2} + DA^{2} + 2\overrightarrow{BC} \cdot (\overrightarrow{AB} + \overrightarrow{CD})$$

$$= AB^{2} + BC^{2} + CD^{2} + DA^{2} + 2\overrightarrow{BC} \cdot (\overrightarrow{AB} - \overrightarrow{DC}) \text{ (*)}$$

Or, ABCD est un parallélogramme, donc : $\overrightarrow{AB} = \overrightarrow{DC}$ (*) devient donc :

$$AB^{2} + BC^{2} + CD^{2} + DA^{2} + 2\overrightarrow{BC} \cdot \overrightarrow{0}$$

= $AB^{2} + BC^{2} + CD^{2} + DA^{2}$

On a donc finalement : $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2$.